Latent Variable Models And Factor Analysis

Author: David J. Bartholomew
Editor: John Wiley & Sons
ISBN: 9780470971925
File Size: 28,88 MB
Format: PDF, Kindle
Read: 6379
Download

This book provides a comprehensive and unified approach to factor analysis and latent variable modeling and theory, providing a unified and coherent treatment from a statistical perspective. A general framework is presented to enable the derivation of the commonly used models. Updated numerical examples are provided as well as the software to carry them out. Written by leading experts in the field, Latent Variable Models and Factor Analysis: * Includes new topics such as, covariate effects and non-linear terms, multiple population analysis and univariate and bivariate margins. * Provides a new section on structural equation models (SEM) and Markov Chain Monte Carlo methods, along with illustrative examples. * Looks at estimation methods, goodness-of-fit, non-linear models, covariates, longitudinal data and multilevel modeling along with updated examples throughout. * Unifies many different streams of latent variable modeling and probability modeling. An introductory section is provided, which looks at the nature and interpretation of a latent variable, motivating discussions of closely related methods which make little or no explicit use of latent variables. Principal components are discussed in more depth, exploring its relationship to factor analysis in both historical and contemporary and theoretically and empirically. Furthermore, the book explores The Bonds' Model for abilities, a model which has a correlation structure which is identical to that of the factor model and hence cannot be distinguished from it and does not involve latent variables. No prior acquaintance with latent variable modeling is needed although a broad understanding of statistical theory is necessary.

Latent Variable Models And Factor Analysis

Author: David J. Bartholomew
Editor: John Wiley & Sons
ISBN: 1119973708
File Size: 79,97 MB
Format: PDF, Mobi
Read: 9643
Download

Latent Variable Models and Factor Analysis provides a comprehensive and unified approach to factor analysis and latent variable modeling from a statistical perspective. This book presents a general framework to enable the derivation of the commonly used models, along with updated numerical examples. Nature and interpretation of a latent variable is also introduced along with related techniques for investigating dependency. This book: Provides a unified approach showing how such apparently diverse methods as Latent Class Analysis and Factor Analysis are actually members of the same family. Presents new material on ordered manifest variables, MCMC methods, non-linear models as well as a new chapter on related techniques for investigating dependency. Includes new sections on structural equation models (SEM) and Markov Chain Monte Carlo methods for parameter estimation, along with new illustrative examples. Looks at recent developments on goodness-of-fit test statistics and on non-linear models and models with mixed latent variables, both categorical and continuous. No prior acquaintance with latent variable modelling is pre-supposed but a broad understanding of statistical theory will make it easier to see the approach in its proper perspective. Applied statisticians, psychometricians, medical statisticians, biostatisticians, economists and social science researchers will benefit from this book.

Latent Variable Models

Author: John C. Loehlin
Editor: Taylor & Francis
ISBN: 131728528X
File Size: 26,73 MB
Format: PDF, ePub, Mobi
Read: 2346
Download

Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis introduces latent variable models by utilizing path diagrams to explain the relationships in the models. This approach helps less mathematically-inclined readers to grasp the underlying relations among path analysis, factor analysis, and structural equation modeling, and to set up and carry out such analyses. This revised and expanded fifth edition again contains key chapters on path analysis, structural equation models, and exploratory factor analysis. In addition, it contains new material on composite reliability, models with categorical data, the minimum average partial procedure, bi-factor models, and communicating about latent variable models. The informal writing style and the numerous illustrative examples make the book accessible to readers of varying backgrounds. Notes at the end of each chapter expand the discussion and provide additional technical detail and references. Moreover, most chapters contain an extended example in which the authors work through one of the chapter’s examples in detail to aid readers in conducting similar analyses with their own data. The book and accompanying website provide all of the data for the book’s examples as well as syntax from latent variable programs so readers can replicate the analyses. The book can be used with any of a variety of computer programs, but special attention is paid to LISREL and R. An important resource for advanced students and researchers in numerous disciplines in the behavioral sciences, education, business, and health sciences, Latent Variable Models is a practical and readable reference for those seeking to understand or conduct an analysis using latent variables.

Latent Variable Models And Factor Analysis

Author: David J. Bartholomew
Editor: Hodder Education
ISBN:
File Size: 51,60 MB
Format: PDF
Read: 1335
Download

Latent variables, variables that cannot be observed directly, have numerous applications, particularly in psychometrics and sociology, and this new edition provides a comprehensive and unified treatment. Extensively revised and including much recent work, the book develops a framework for handling latent variables with standard statistical methods. It includes an introductory chapter, followed by a careful development of the General Linear Latent Variable Model (GLLVM). A large class of latent variable models turns out to be special cases of GLLVM, and the book devotes a number of chapters to specific models. The treatment aims to be mathematically complete and emphasizes questions of precision and goodness of fit. The book features numerous examples and concludes with a critique of some of the popular and widely used linear models.

Latent Variable Modeling And Applications To Causality

Author: Maia Berkane
Editor: Springer Science & Business Media
ISBN: 146121842X
File Size: 64,49 MB
Format: PDF, ePub, Docs
Read: 3534
Download

This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.

Latent Variable Models And Factor Analysis

Author: David J. Bartholomew
Editor: Wiley
ISBN: 9780340692431
File Size: 65,35 MB
Format: PDF
Read: 5339
Download

Hitherto latent variable modelling has hovered on the fringes of the statistical mainstream but if the purpose of statistics is to deal with real problems, there is every reason for it to move closer to centre stage. In the social sciences especially, latent variables are common and if they are to be handled in a truly scientific manner, statistical theory must be developed to include them. This book aims to show how that should be done. This second edition is a complete re-working of the book of the same name which appeared in the Griffin’s Statistical Monographs in 1987. Since then there has been a surge of interest in latent variable methods which has necessitated a radical revision of the material but the prime object of the book remains the same. It provides a unified and coherent treatment of the field from a statistical perspective. This is achieved by setting up a sufficiently general framework to enable the derivation of the commonly used models. The subsequent analysis is then done wholly within the realm of probability calculus and the theory of statistical inference. Numerical examples are provided as well as the software to carry them out ( where this is not otherwise available). Additional data sets are provided in some cases so that the reader can aquire a wider experience of analysis and interpretation.

Latent Variable Modeling With R

Author: W. Holmes Finch
Editor: Routledge
ISBN: 1317970756
File Size: 76,61 MB
Format: PDF, Mobi
Read: 7626
Download

This book demonstrates how to conduct latent variable modeling (LVM) in R by highlighting the features of each model, their specialized uses, examples, sample code and output, and an interpretation of the results. Each chapter features a detailed example including the analysis of the data using R, the relevant theory, the assumptions underlying the model, and other statistical details to help readers better understand the models and interpret the results. Every R command necessary for conducting the analyses is described along with the resulting output which provides readers with a template to follow when they apply the methods to their own data. The basic information pertinent to each model, the newest developments in these areas, and the relevant R code to use them are reviewed. Each chapter also features an introduction, summary, and suggested readings. A glossary of the text’s boldfaced key terms and key R commands serve as helpful resources. The book is accompanied by a website with exercises, an answer key, and the in-text example data sets. Latent Variable Modeling with R: -Provides some examples that use messy data providing a more realistic situation readers will encounter with their own data. -Reviews a wide range of LVMs including factor analysis, structural equation modeling, item response theory, and mixture models and advanced topics such as fitting nonlinear structural equation models, nonparametric item response theory models, and mixture regression models. -Demonstrates how data simulation can help researchers better understand statistical methods and assist in selecting the necessary sample size prior to collecting data. -www.routledge.com/9780415832458 provides exercises that apply the models along with annotated R output answer keys and the data that corresponds to the in-text examples so readers can replicate the results and check their work. The book opens with basic instructions in how to use R to read data, download functions, and conduct basic analyses. From there, each chapter is dedicated to a different latent variable model including exploratory and confirmatory factor analysis (CFA), structural equation modeling (SEM), multiple groups CFA/SEM, least squares estimation, growth curve models, mixture models, item response theory (both dichotomous and polytomous items), differential item functioning (DIF), and correspondance analysis. The book concludes with a discussion of how data simulation can be used to better understand the workings of a statistical method and assist researchers in deciding on the necessary sample size prior to collecting data. A mixture of independently developed R code along with available libraries for simulating latent models in R are provided so readers can use these simulations to analyze data using the methods introduced in the previous chapters. Intended for use in graduate or advanced undergraduate courses in latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, and social and health sciences, researchers in these fields also appreciate this book’s practical approach. The book provides sufficient conceptual background information to serve as a standalone text. Familiarity with basic statistical concepts is assumed but basic knowledge of R is not.

An Introduction To Latent Variable Models

Author: B. Everett
Editor: Springer Science & Business Media
ISBN: 9400955642
File Size: 33,83 MB
Format: PDF, ePub, Docs
Read: 3095
Download

Latent variable models are used in many areas of the social and behavioural sciences, and the increasing availability of computer packages for fitting such models is likely to increase their popularity. This book attempts to introduce such models to applied statisticians and research workers interested in exploring the structure of covari ance and correlation matrices in terms of a small number of unob servable constructs. The emphasis is on the practical application of the procedures rather than on detailed discussion of their mathe matical and statistical properties. It is assumed that the reader is familiar with the most commonly used statistical concepts and methods, particularly regression, and also has a fair knowledge of matrix algebra. My thanks are due to my colleagues Dr David Hand and Dr Graham Dunn for helpful comments on the book, to Mrs Bertha Lakey for her careful typing of a difficult manuscript and to Peter Cuttance for assistance with the LlSREL package. In addition the text clearly owes a great deal to the work on structural equation models published by Karl Joreskog, Dag Sorbom, Peter Bentler, Michael Browne and others.

Latent Variable Models And Factor Analysis

Author: David J. Bartholomew
Editor: Wiley
ISBN: 9780470711101
File Size: 16,54 MB
Format: PDF, ePub, Mobi
Read: 9090
Download

Hitherto latent variable modelling has hovered on the fringes of the statistical mainstream but if the purpose of statistics is to deal with real problems, there is every reason for it to move closer to centre stage. In the social sciences especially, latent variables are common and if they are to be handled in a truly scientific manner, statistical theory must be developed to include them. This book aims to show how that should be done. This second edition is a complete re-working of the book of the same name which appeared in the Griffin’s Statistical Monographs in 1987. Since then there has been a surge of interest in latent variable methods which has necessitated a radical revision of the material but the prime object of the book remains the same. It provides a unified and coherent treatment of the field from a statistical perspective. This is achieved by setting up a sufficiently general framework to enable the derivation of the commonly used models. The subsequent analysis is then done wholly within the realm of probability calculus and the theory of statistical inference. Numerical examples are provided as well as the software to carry them out ( where this is not otherwise available). Additional data sets are provided in some cases so that the reader can aquire a wider experience of analysis and interpretation.

Latent Variable Models

Author: John C. Loehlin
Editor: Psychology Press
ISBN: 1135614342
File Size: 62,10 MB
Format: PDF, Docs
Read: 6381
Download

This book introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. This approach helps less mathematically inclined students grasp the underlying relationships between path analysis, factor analysis, and structural equation modeling more easily. A few sections of the book make use of elementary matrix algebra. An appendix on the topic is provided for those who need a review. The author maintains an informal style so as to increase the book's accessibility. Notes at the end of each chapter provide some of the more technical details. The book is not tied to a particular computer program, but special attention is paid to LISREL, EQS, AMOS, and Mx. New in the fourth edition of Latent Variable Models: *a data CD that features the correlation and covariance matrices used in the exercises; *new sections on missing data, non-normality, mediation, factorial invariance, and automating the construction of path diagrams; and *reorganization of chapters 3-7 to enhance the flow of the book and its flexibility for teaching. Intended for advanced students and researchers in the areas of social, educational, clinical, industrial, consumer, personality, and developmental psychology, sociology, political science, and marketing, some prior familiarity with correlation and regression is helpful.

Latent Variable Models

Author: John C. Loehlin
Editor: Routledge
ISBN: 9781138916074
File Size: 44,88 MB
Format: PDF, ePub
Read: 8964
Download

Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis introduces latent variable models by utilizing path diagrams to explain the relationships in the models. This approach helps less mathematically-inclined readers to grasp the underlying relations among path analysis, factor analysis, and structural equation modeling, and to set up and carry out such analyses. This revised and expanded fifth edition again contains key chapters on path analysis, structural equation models, and exploratory factor analysis. In addition, it contains new material on composite reliability, models with categorical data, the minimum average partial procedure, bi-factor models, and communicating about latent variable models. The informal writing style and the numerous illustrative examples make the book accessible to readers of varying backgrounds. Notes at the end of each chapter expand the discussion and provide additional technical detail and references. Moreover, most chapters contain an extended example in which the authors work through one of the chapter's examples in detail to aid readers in conducting similar analyses with their own data. The book and accompanying website provide all of the data for the book's examples as well as syntax from latent variable programs so readers can replicate the analyses. The book can be used with any of a variety of computer programs, but special attention is paid to LISREL and R. An important resource for advanced students and researchers in numerous disciplines in the behavioral sciences, education, business, and health sciences, Latent Variable Models is a practical and readable reference for those seeking to understand or conduct an analysis using latent variables.

Latent Variable Models

Author: John C. Loehlin
Editor: Psychology Press
ISBN:
File Size: 51,94 MB
Format: PDF, Docs
Read: 8392
Download

This book provides an introduction to a rapidly-growing area in the social and behavioral sciences -- the modeling of systems in which one or more variables are hypothesized, but not directly observed. Providing a conceptually unified treatment of modeling of this type -- exploratory and confirmatory factor analysis, path analysis, and structural equation analysis -- it is intended to introduce these techniques to individuals who have had some exposure to statistical methods in general, but are beginners in this particular area. Using an inductive and informal approach, it emphasizes the use of path diagrams and a variety of concrete examples, and keeps the mathematics largely intuitive. Examples are drawn from a variety of fields, including psychometrics, sociology, psychology, education and behavior genetics. Although some introductory material is provided for LISREL, EQS, and CALIS, and for exploratory factor analysis programs in SAS, SPSS, and BMPD, the book is not closely tied to any one computer program or statistical package.

Latent Variable And Latent Structure Models

Author: George A. Marcoulides
Editor: Psychology Press
ISBN: 1135640661
File Size: 13,27 MB
Format: PDF, ePub
Read: 1958
Download

This edited volume features cutting-edge topics from the leading researchers in the areas of latent variable modeling. Content highlights include coverage of approaches dealing with missing values, semi-parametric estimation, robust analysis, hierarchical data, factor scores, multi-group analysis, and model testing. New methodological topics are illustrated with real applications. The material presented brings together two traditions: psychometrics and structural equation modeling. Latent Variable and Latent Structure Models' thought-provoking chapters from the leading researchers in the area will help to stimulate ideas for further research for many years to come. This volume will be of interest to researchers and practitioners from a wide variety of disciplines, including biology, business, economics, education, medicine, psychology, sociology, and other social and behavioral sciences. A working knowledge of basic multivariate statistics and measurement theory is assumed.

Current Topics In The Theory And Application Of Latent Variable Models

Author: Michael Charles Edwards
Editor: Routledge
ISBN: 1848729510
File Size: 53,45 MB
Format: PDF
Read: 3758
Download

This book presents recent developments in the theory and application of latent variable models (LVMs) by some of the most prominent researchers in the field. Topics covered involve a range of LVM frameworks including item response theory, structural equation modeling, factor analysis, and latent curve modeling, as well as various non-standard data structures and innovative applications. The book is divided into two sections, although several chapters cross these content boundaries. Part one focuses on complexities which involve the adaptation of latent variables models in research problems where real-world conditions do not match conventional assumptions. Chapters in this section cover issues such as analysis of dyadic data and complex survey data, as well as analysis of categorical variables. Part two of the book focuses on drawing real-world meaning from results obtained in LVMs. In this section there are chapters examining issues involving assessment of model fit, the nature of uncertainty in parameter estimates, inferences, and the nature of latent variables and individual differences. This book appeals to researchers and graduate students interested in the theory and application of latent variable models. As such, it serves as a supplementary reading in graduate level courses on latent variable models. Prerequisites include basic knowledge of latent variable models.

Statistical Factor Analysis And Related Methods

Author: Alexander T. Basilevsky
Editor: John Wiley & Sons
ISBN: 0470317736
File Size: 11,35 MB
Format: PDF, ePub, Docs
Read: 3421
Download

Statistical Factor Analysis and Related Methods Theory and Applications In bridging the gap between the mathematical and statistical theory of factor analysis, this new work represents the first unified treatment of the theory and practice of factor analysis and latent variable models. It focuses on such areas as: * The classical principal components model and sample-population inference * Several extensions and modifications of principal components, including Q and three-mode analysis and principal components in the complex domain * Maximum likelihood and weighted factor models, factor identification, factor rotation, and the estimation of factor scores * The use of factor models in conjunction with various types of data including time series, spatial data, rank orders, and nominal variable * Applications of factor models to the estimation of functional forms and to least squares of regression estimators

Handbook Of Latent Variable And Related Models

Author:
Editor: Elsevier
ISBN: 9780080471266
File Size: 37,13 MB
Format: PDF, Mobi
Read: 5704
Download

This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Latent Variable Modeling Using R

Author: A. Alexander Beaujean
Editor:
ISBN: 9781848726994
File Size: 47,79 MB
Format: PDF, Mobi
Read: 7106
Download

This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book's examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter's exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Latent Variable Models

Author: Source Wikipedia
Editor: University-Press.org
ISBN: 9781230526065
File Size: 28,35 MB
Format: PDF, Mobi
Read: 3716
Download

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 28. Chapters: Common-method variance, Doubly stochastic model, Dynamic topic model, Factor analysis, Factor regression model, First-difference estimator, Item response theory, Latent class model, Latent Dirichlet allocation, Latent semantic analysis, Latent variable, Latent variable model, Local independence, Mixture model, Nuisance variable, Pachinko allocation, Partial least squares regression, Probabilistic latent semantic analysis, Theory of conjoint measurement, Thurstonian model.

Latent Variable Models For Multivariate Spatial Data

Author: Xuan Liu
Editor:
ISBN:
File Size: 57,39 MB
Format: PDF
Read: 159
Download


A Beginner S Guide To Structural Equation Modeling

Author: Randall E. Schumacker
Editor: Routledge
ISBN: 1317608097
File Size: 40,93 MB
Format: PDF, ePub, Docs
Read: 6366
Download

Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.